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ABSTRACT

The formation of a hybrid-nanocomposite using a-glucosyl stevia (Stevia-G) and surfactant was explored
to improve the dissolution of flurbiprofen (FP). As reported previously, the dissolution amount of FP was
enhanced in the presence of Stevia-G, induced by the formation of an FP and Stevia-G-associated nano-
structure. When a small amount of sodium dodecyl sulfate (SDS) was present with Stevia-G, the amount
of dissolved FP was extremely enhanced. This dissolution-enhancement effect was also observed with
the cationic surfactant of dodecyl trimethyl ammonium bromide, but not with the non-ionic surfac-
tant of n-octyl--p-maltopyranoside. To investigate the dissolution-enhancement effect of Stevia-G/SDS
mixture, the pyrene I;/I5 ratio was plotted versus the Stevia-G concentration. The pyrene I;/I5 ratio of
Stevia-G/SDS mixture had a sigmoidal curve at lower Stevia-G concentrations compared to the Stevia-G
solution alone. These results indicate that the Stevia-G/SDS mixture provides a hydrophobic core around
pyrene molecules at lower Stevia-G concentrations, leading to nanocomposite formation between Stevia-
G and SDS. The nanocomposite of Stevia-G/SDS showed no cytotoxicity to Caco-2 cells at a mixture of 0.1%
SDS and 1% Stevia-G solution, whereas 0.1% SDS solution showed high toxicity. These results suggest that
the nanocomposite formation of Stevia-G/SDS may be useful way to enhance the dissolution of poorly

water-soluble drugs without special treatment.

© 2012 Elsevier B.V. All rights reserved.

Many new drug entities are poorly water-soluble. Therefore,
one of the main themes of pharmaceutical research is strategy
for improving the dissolution profiles of drugs. Various techniques
have been used to improve the dissolution profile of poorly water-
soluble drugs, including the use of surfactants (Wong et al., 2006),
inclusion complexation (Wang et al., 2009) and solid dispersions
(Boghra et al., 2011; Tho et al., 2010). We have already reported
the formation in aqueous media of micelle-like nanostructures
by a-glucosyl stevia (Stevia-G), a trans-glycosylated food addi-
tive, which improve the dissolution and bioavailability of poorly
water-soluble drugs (Uchiyama et al., 2011). However, a high con-
centration of Stevia-G is required to achieve significant dissolution
enhancement.

Surfactants are commonly used as pharmaceutical excipients
to increase the solubility of insoluble drugs (Sakeer et al., 2010).
However, the use of surfactants is limited by their charged nature
and irritative effect. Mixed surfactant systems comprised of com-
mon surfactants, such as alkyl sulfates and alcohol ethoxylates,
have been extensively investigated (Croce et al., 2004; Griffiths
et al., 1999; Penfold et al., 1999). Mixtures of surfactant solution
form mixed micelles through specific interactions between the
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heterostructured surfactants. Mixtures have characteristic prop-
erties that are superior to those of the single component. (Mehta
et al.,, 2009; Yan et al., 2009; Zhang et al., 2010). The synergistic
effect of mixed surfactant systems may reduce the total amount
of surfactants used in pharmaceutical applications (Garcia et al.,
1992). This might be significant advantage in the case of pharma-
ceuticals, which require the limited use of surfactants owing to
toxicity-related complications.

The aim of the present study was to investigate the possibil-
ity of the formation of nanocomposites of Stevia-G and surfactants
that would improve the dissolution profile of poorly water-soluble
drugs. Flurbiprofen was used as poorly water-soluble model drug
and sodium dodecyl sulfate (SDS), dodecyl trimethyl ammonium
bromide (DTAB) and n-octyl-3-p-maltopyranoside (OMP) were
used as surfactants with Stevia-G. The dissolution profiles of flur-
biprofen from the tricomponent of FP/Stevia-G/surfactant were
compared to those of the untreated drug. To demonstrate the
specific interaction between Stevia-G and the surfactant, the
microenvironmental change around pyrene and changes of surface
tension value were also assessed.

We investigated three type surfactants: anionic, cationic and
non-ionic. The dissolution profiles of FP from the simple mixing
of a FP/Stevia-G/SDS tricomponent containing 50 mg FP in distilled
water (50 mL, shaking speed; 60 spm) were determined with ref-
erence to those of untreated FP and bicomponents of FP/SDS (1/1
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Fig. 1. Dissolution profiles of FP from Stevia-G/SDS systems in distilled water
(O), Untreated FP, (x) bicomponent of FP/SDS (1/1 w/w); (@), bicomponent of
FP/Stevia-G (1/10 w/w); (A), tricomponent of FP/Stevia-G/SDS (1/10/0.2 w/w/w);
(m), tricomponent of FP/Stevia-G/SDS (1/10/0.5 w/w/w); (0), tricomponent of
FP/Stevia-G/SDS (1/10/1 w/w/w).

w/w) and FP/Stevia-G (1/10 w/w) (Fig. 1). The solubility of FP was
estimated as ca. 35 pg/mL in distilled water after incubation at
37°C for 1 week. The dissolved amount of FP from the FP/SDS (1/1
w/w) bicomponent was almost the same as the solubility of FP
itself while the concentrations of FP following dissolution from the
FP/Stevia-G (1/10 w/w) bicomponent were 2-fold higher than that
of the untreated FP. We have already reported the nanostructure
formation by Stevia-G in aqueous media, and demonstrated that
this nanostructure can encapsulate a poorly water-soluble drug
(Uchiyama et al., 2011). On the other hand, the amount of dis-
solved FP from the FP/Stevia-G/SDS tricomponent was dramatically
increased compared to that of untreated FP, or either bicomponent,
FP/SDS (1/1 w/w) or FP/Stevia-G (1/10 w/w). In addition, the con-
centration of dissolved FP in the tricomponent system increased
with the SDS amount. Specifically, the amount of FP dissolved from
the FP/Stevia-G/SDS (1/10/1 w/w/w) tricomponent was about 7-
fold that of untreated FP. Changes in surface tension were assessed
to investigate the dissolution-enhancement effect and interaction
between Stevia-G and SDS. Fig. 2 shows the plots of the surface
tension in binary mixtures of SDS and Stevia-G of different compo-
sitions. The surface tension of SDS and Stevia-G solution reached
a break point at 2.5 mg/mL SDS and 15 mg/mL Stevia-G concentra-
tion, respectively, whereas the surface tension values of the binary
mixture of Stevia-G/SDS were slightly lower than that of the Stevia-
G solution. The break point of surface tension of the binary mixture
of Stevia-G/SDS solution was achieved by a lower Stevia-G concen-
tration compared of that of the Stevia-G solution alone.

The I1/I5 ratio of the fluorescence spectra of pyrene was plot-
ted to assess the aggregation process of the Stevia-G/SDS system
in greater detail. Pyrene has been often used for the investigation
of microenvironmental changes in micellar solutions (Tsubonea
and Ghoshb, 2004). Fig. 3 shows plots of the pyrene I;/I3 ratio
index in binary mixtures of SDS and Stevia-G of different com-
positions. The critical micelle concentration (cmc) of Stevia-G and
SDS solution calculated from the pyrene I;/I3 plot was about 16
and 2.5 mg/mL respectively. As the SDS concentration contained
in Stevia-G solution increased, the pyrene I;/I3 ratio reached a
constant value at lower Stevia-G concentrations. This result indi-
cates that a binary mixture of Stevia-G/SDS provides a hydrophobic
environment around pyrene molecules under low Stevia-G concen-
trations, causing a hybrid nanocomposite to form between Stevia-G
and SDS. The cmc values of the Stevia-G solution with 0.2 mg/mL
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Fig. 2. Changes in surface tension as a function of Stevia-G concentration in distilled
water (@), Stevia-G solution; (x ) SDS solution; (A), Stevia-G solution with 0.2 mg/mL
SDS; (m), Stevia-G solution with 0.5 mg/mL SDS; (¢), Stevia-G solution with 1 mg/mL
SDS.

SDS, 0.5mg/mL SDS and with 1.0 mg/mL SDS were 7.2, 2.5 and
0.8 mg/mL, respectively. The decrease in cmc results in an increase
in the solubilization potential in the micellar systems.

The size of nanocomposite formed by interaction between
Stevia-G and SDS was several nanometers as determined by
dynamic light scattering (data not shown). Although that range of
size might not be measured accurately by dynamic light scatter-
ing, the existence of nanocomposite was at least confirmed. The
mixed-surfactant system shows favorable characteristics in com-
parison to micelles formed by single surfactants (Liang et al., 2011;
Zhang et al., 2011). In mixed-surfactant systems, it is well-known
that physical properties, such as the cmc, can be significantly
lower than would be expected from the properties of the pure
components (Penfold et al., 1999). Such solubilizing-enhancement
effects—highly valuable in the pharmaceutical field—are due to the
occurrence of interactions between different surfactants. Patel and
Joshi (2008) reported the possibility of using a mixed surfactant sys-
tem as a carrier in a solid dispersion (Patel and Joshi, 2008). They
showed that mixed surfactant blends showed higher solubility than
the individual surfactants. The synergistic behavior of mixed sur-
factant systems may be exploited to reduce the total amount of
surfactants used in particular applications.

Fig. 4(a) shows the effect of the addition of DTAB, a cationic
surfactant, on dissolution profiles of the FP in distilled water. The
amount of dissolved FP from a FP/DTAB (1/4 w/w) bicomponent
was almost the same as the estimated FP solubility. On the other
hand, the concentration of dissolved FP from the FP/Stevia-G/DTAB
(1/10/4 w/w/w) tricomponent was markedly improved, with 4.5-
times higher solubility than untreated FP.

Fig. 4(b) shows the dissolution profiles of FP from tricomponents
of FP/Stevia-G/OMP in distilled water. OMP is a nonionic surfactant
consisting of a hydrocarbon chain linked to a sugar residue. The
addition of OMP to an FP/Stevia-G bicomponent did notimprove the
amount of dissolved FP nearly to the same degree as the FP/Stevia-
G/SDS and FP/Stevia-G/DTAB tricomponents. The pyrene I /I3 ratio
of the Stevia-G/DTAB mixture indicated a sigmoidal curve at the
lower Stevia-G concentration compared to the Stevia-G solution
alone. However, the pyrene I /I3 ratio plot from binary mixtures of
OMP/Stevia-G was almost same as that of Stevia-G solution alone
(data not shown). These results may suggest that Stevia-G inter-
acts more strongly with ionic surfactants than nonionic surfactants.
Fig. 5 shows the schematic representation of a nanocomposite
formed by SDS and Stevia-G-aggregated nanostructure. Data from
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Fig. 3. Plot of Pyrene I;/I5 ratios versus (a) SDS and (b) Stevia-G concentration (®), Stevia-G solution; (x) SDS solution; (A), Stevia-G solution with 0.2 mg/mL SDS; (M),

Stevia-G solution with 0.5 mg/mL SDS; (¢), Stevia-G solution with 1 mg/mL SDS).
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Fig. 4. Dissolution profiles of FP from (a) Stevia-G/DTAB system and (b) Stevia-G/OMP systems in distilled water. (O), Untreated FP; (x) bicomponent of FP/DTAB (1/4
w/w) or bicomponent of FP/OMP (1/4 w/w); (@), bicomponent of FP/Stevia-G (1/10 w/w); (A), tricomponent of FP/Stevia-G/DTAB (1/10/1 w/w/w); (W), tricomponent of
FP/Stevia-G/DTAB (1/10/2 w/w/w); (), tricomponent of FP/Stevia-G/DTAB (1/10/4 w/w/w); (O), tricomponent of FP/Stevia-G/OMP (1/10/1 w/w/w); (#), tricomponent of

FP/Stevia-G/OMP (1/10/4 w/w[w)).

the dissolution studies and pyrene I /I3 ratio plot may indicate that
SDS or DTAB was able to intercalate into nanostructures of Stevia-
G-aggregates such as Fig. 5. Meanwhile, OMP may not form an
intercalated structure, since no effect of dissolution enhancement

Nanostructurte  formed
by Stevia-G aggregation

SDS molecule

was observed. The intercalation of the nonionic surfactant was
reported to shield the repulsive interactions between the charged
headgroups of the ionic surfactant, enhancing the electrostatic sta-
bilization of the mixed micelles. In addition, the contribution of an

Nanocomposite formation
between Stevia-G and SDS

Fig. 5. Schematic representation of nanocomposite formation among SDS and Stevia-G-aggregated nanostructures.
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attractive ion-dipole interaction between the headgroups of ionic
and nonionic components enhances the thermodynamic stability
(Hierrezuelo et al., 2005). The interaction between Stevia-G and
SDS reduced the repulsion of charged headgroups of SDS and may
stabilize the micelle structure. The thermodynamic stability of the
mixed micelle would enhance the incorporability of solutes into
the micellar phase.

There was no cytotoxicity to Caco-2 cells at levels of 1% Stevia-G
solution (see Supporting information Fig. S1). In the case of the SDS
solution, a significant decrease of viability was observed even for
a 0.1% solution. Meanwhile, the viability of Caco-2 cells remained
unchanged when the cells came into contact with a binary mixture
of 1% Stevia-G/0.1% SDS solution, indicating the very low cytotox-
icity of the binary mixture. Clearly, low toxicity is a key advantage
for pharmaceutical oral formulations.

In conclusion, the nanocomposite formation of Stevia-
G/surfactant with simple blending in distilled water will be a
useful way to enhance the dissolution profile of flurbiprofen
without special treatment.
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